13 research outputs found

    On Applications of New Soft and Evolutionary Computing Techniques to Direct and Inverse Modeling Problems

    Get PDF
    Adaptive direct modeling or system identification and adaptive inverse modeling or channel equalization find extensive applications in telecommunication, control system, instrumentation, power system engineering and geophysics. If the plants or systems are nonlinear, dynamic, Hammerstein and multiple-input and multiple-output (MIMO) types, the identification task becomes very difficult. Further, the existing conventional methods like the least mean square (LMS) and recursive least square (RLS) algorithms do not provide satisfactory training to develop accurate direct and inverse models. Very often these (LMS and RLS) derivative based algorithms do not lead to optimal solutions in pole-zero and Hammerstein type system identification problem as they have tendency to be trapped by local minima. In many practical situations the output data are contaminated with impulsive type outliers in addition to measurement noise. The density of the outliers may be up to 50%, which means that about 50% of the available data are affected by outliers. The strength of these outliers may be two to five times the maximum amplitude of the signal. Under such adverse conditions the available learning algorithms are not effective in imparting satisfactory training to update the weights of the adaptive models. As a result the resultant direct and inverse models become inaccurate and improper. Hence there are three important issues which need attention to be resolved. These are : (i) Development of accurate direct and inverse models of complex plants using some novel architecture and new learning techniques. (ii) Development of new training rules which alleviates local minima problem during training and thus help in generating improved adaptive models. (iii) Development of robust training strategy which is less sensitive to outliers in training and thus to create identification and equalization models which are robust against outliers. These issues are addressed in this thesis and corresponding contribution are outlined in seven Chapters. In addition, one Chapter on introduction, another on required architectures and algorithms and last Chapter on conclusion and scope for further research work are embodied in the thesis. A new cascaded low complexity functional link artificial neural network (FLANN) structure is proposed and the corresponding learning algorithm is derived and used to identify nonlinear dynamic plants. In terms of identification performance this model is shown to outperform the multilayer perceptron and FLANN model. A novel method of identification of IIR plants is proposed using comprehensive learning particle swarm optimization (CLPSO) algorithm. It is shown that the new approach is more accurate in identification and takes less CPU time compared to those obtained by existing recursive LMS (RLMS), genetic algorithm (GA) and PSO based approaches. The bacterial foraging optimization (BFO) and PSO are used to develop efficient learning algorithms to train models to identify nonlinear dynamic and MIMO plants. The new scheme takes less computational effort, more accurate and consumes less input samples for training. Robust identification and equalization of complex plants have been carried out using outliers in training sets through minimization of robust norms using PSO and BFO based methods. This method yields robust performance both in equalization and identification tasks. Identification of Hammerstein plants has been achieved successfully using PSO, new clonal PSO (CPSO) and immunized PSO (IPSO) algorithms. Finally the thesis proposes a distributed approach to identification of plants by developing two distributed learning algorithms : incremental PSO and diffusion PSO. It is shown that the new approach is more efficient in terms of accuracy and training time compared to centralized PSO based approach. In addition a robust distributed approach for identification is proposed and its performance has been evaluated. In essence the thesis proposed many new and efficient algorithms and structure for identification and equalization task such as distributed algorithms, robust algorithms, algorithms for ploe-zero identification and Hammerstein models. All these new methods are shown to be better in terms of performance, speed of computation or accuracy of results

    Sentiment Analysis of Twitter Data for Predicting Stock Market Movements

    Full text link
    Predicting stock market movements is a well-known problem of interest. Now-a-days social media is perfectly representing the public sentiment and opinion about current events. Especially, twitter has attracted a lot of attention from researchers for studying the public sentiments. Stock market prediction on the basis of public sentiments expressed on twitter has been an intriguing field of research. Previous studies have concluded that the aggregate public mood collected from twitter may well be correlated with Dow Jones Industrial Average Index (DJIA). The thesis of this work is to observe how well the changes in stock prices of a company, the rises and falls, are correlated with the public opinions being expressed in tweets about that company. Understanding author's opinion from a piece of text is the objective of sentiment analysis. The present paper have employed two different textual representations, Word2vec and N-gram, for analyzing the public sentiments in tweets. In this paper, we have applied sentiment analysis and supervised machine learning principles to the tweets extracted from twitter and analyze the correlation between stock market movements of a company and sentiments in tweets. In an elaborate way, positive news and tweets in social media about a company would definitely encourage people to invest in the stocks of that company and as a result the stock price of that company would increase. At the end of the paper, it is shown that a strong correlation exists between the rise and falls in stock prices with the public sentiments in tweets.Comment: 6 pages 4 figures Conference Pape

    Development and evaluation of novel forecasting adaptive ensemble model

    No full text
    This paper proposes a new ensemble based adaptive forecasting structure for efficient different interval days' ahead prediction of five different asset values (NAV). In this approach three individual adaptive structures such as adaptive moving average (AMA), adaptive auto regressive moving average (AARMA) and feedback radial basis function network (FRBF) are employed to first train with conventional LMS, conventional forward-backward LMS and corresponding learning algorithm of FRBF respectively. After successful validation of each model the output obtained by each individual model is optimally weighted using Genetic algorithm (GA) as well as particle swarm optimization (PSO) based techniques to produce the best possible different days ahead prediction accuracy. Finally the results of prediction obtained of the NAV values are compared with the results obtained by individual predictors as well as by other four existing ensemble schemes. It is in general demonstrated that in all cases the proposed forecasting scheme outperforms other competitive methods

    Development and performance evaluation of a novel knowledge guided artificial neural network (KGANN) model for exchange rate prediction

    Get PDF
    This paper presents a new adaptive forecasting model using a knowledge guided artificial neural network (KGANN) structure for efficient prediction of exchange rate. The new structure has two parallel systems. The first system is a least mean square (LMS) trained adaptive linear combiner, whereas the second system employs an adaptive FLANN model to supplement the knowledge base with an objective to improve its performance value. The output of a trained LMS model is added to an adaptive FLANN model to provide a more accurate exchange rate compared to that predicted by either a simple LMS or a FLANN model. This finding has been demonstrated through an exhausting computer simulation study and using real life data. Thus the proposed KGANN is an efficient forecasting model for exchange rate prediction

    Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training

    Get PDF
    To alleviate the limitations of statistical based methods of forecasting of exchange rates, soft and evolutionary computing based techniques have been introduced in the literature. To further the research in this direction this paper proposes a simple but promising hybrid prediction model by suitably combining an adaptive autoregressive moving average (ARMA) architecture and differential evolution (DE) based training of its feed-forward and feed-back parameters. Simple statistical features are extracted for each exchange rate using a sliding window of past data and are employed as input to the prediction model for training its internal coefficients using DE optimization strategy. The prediction efficiency is validated using past exchange rates not used for training purpose. Simulation results using real life data are presented for three different exchange rates for one–fifteen months’ ahead predictions. The results of the developed model are compared with other four competitive methods such as ARMA-particle swarm optimization (PSO), ARMA-cat swarm optimization (CSO), ARMA-bacterial foraging optimization (BFO) and ARMA-forward backward least mean square (FBLMS). The derivative based ARMA-FBLMS forecasting model exhibits worst prediction performance of the exchange rates. Comparisons of different performance measures including the training time of the all three evolutionary computing based models demonstrate that the proposed ARMA-DE exchange rate prediction model possesses superior short and long range prediction potentiality compared to others

    On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices

    Get PDF
    This paper develops and assesses the performance of a hybrid prediction model using a radial basis function neural network and non-dominated sorting multiobjective genetic algorithm-II (NSGA-II) for various stock market forecasts. The proposed technique simultaneously optimizes two mutually conflicting objectives: the structure (the number of centers in the hidden layer) and the output mean square error (MSE) of the model. The best compromised non-dominated solution-based model was determined from the optimal Pareto front using fuzzy set theory. The performances of this model were evaluated in terms of four different measures using Standard and Poor 500 (S&P500) and Dow Jones Industrial Average (DJIA) stock data. The results of the simulation of the new model demonstrate a prediction performance superior to that of the conventional radial basis function (RBF)-based forecasting model in terms of the mean average percentage error (MAPE), directional accuracy (DA), Thelis’ U and average relative variance (ARV) values

    Forecasting the CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling

    No full text
    Better accuracy in short-term forecasting is required for intermediate planning for the national target to reduce CO2 emissions. High stake climate change conventions need accurate predictions of the future emission growth path of the participating countries to make informed decisions. The current study forecasts the CO2 emissions of the 17 key emitting countries. Unlike previous studies where linear statistical modeling is used to forecast the emissions, we develop a multilayer artificial neural network model to forecast the emissions. This model is a dynamic nonlinear model that helps to obtain optimal weights for the predictors with a high level of prediction accuracy. The model uses the gross domestic product (GDP), urban population ratio, and trade openness, as predictors for CO2 emissions. We observe an average of 96% prediction accuracy among the 17 countries which is much higher than the accuracy of the previous models. Using the optimal weights and available input data the forecasting of CO2 emissions is undertaken. The results show that high emitting countries, such as China, India, Iran, Indonesia, and Saudi Arabia are expected to increase their emissions in the near future. Currently, low emitting countries, such as Brazil, South Africa, Turkey, and South Korea will also tread on a high emission growth path. On the other hand, the USA, Japan, UK, France, Italy, Australia, and Canada will continuously reduce their emissions. These findings will help the countries to engage in climate mitigation and adaptation negotiations
    corecore